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Abstract. A linear response function is derived for a system of photons interacting with two- 
phonon states. This function determines the electric field spectral density of the cor- 
responding mixed states: two-phonon polaritons. Computations of the spectral density for 
different values of the anharmonicity and the photon-two-phonon coupling constant are 
carried out. 

1. Introduction 

The interaction of electromagnetic waves with many-particle excitations in solids has 
attracted increasing attention in recent years. The linear coupling of polar excitations 
to electromagnetic waves in infinite media leads to the formation of mixed states known 
as bulk polaritons. Thus, transverse polar two-phonon statescontain a photon admixture 
and are essentially two-phonon polaritons. Their spectra have been investigated experi- 
mentally by small-angle Raman scattering [ 1-81. 

A theory of small-angle Raman scattering from two-phonon states has been devel- 
oped in 191 in the context of the polariton Fermi resonance theory [lo]. The latter 
describes the interaction of a polarition branch associated with a fundamental vibration 
with nearby two-phonon states. The photon-two-phonon interaction in that case is 
mediated by the anharmonic Fermi resonance interaction between the single-phonon 
and the two-phonon states. When the two-phonon transitions have non-zero dipole 
moments [ l l ] ,  a direct phonon-two-phonon interaction takes place and leads to the 
formation of two-phonon polariton states. The direct interaction is of a more general 
nature than the Fermi resonance one, since it does not involve any degeneracy in the 
phonon spectrum of the crystal. 

Two-phonon polariton spectra are characterized by a strong wavevector dependence 
(dispersion) in the resonant region and a considerable broadening (damping) in the two- 
phonon band. The damping of bulk polaritons has been considered in a number of 
studies [12-151 and the response function approach has proved to be most efficient in 
the description of their spectra. In the present paper we derive a quantum mechanical 
expression for the linear response function which determines the spectral density of the 
electric field of two-phonon polaritons. Computations of the spectral density for different 
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values of the anharmonicity and the photon-two-phonon coupling constant are carried 
out. 

2. Linear response function for two-phonon polaritons 

Linear response functions for bulk polaritons have been derived phenomenologically in 
[14, 151. In the case of isotropic media they contain the factor 

(k2 - & W 2 / c y  (1) 
whose imaginary part determines the spectrum of bulk polaritons. One possible way to 
describe two-phonon polariton spectra is to introduce in (1) an expression for the 
dielectric function E ( W )  appropriate to the two-phonon region. It should be based on 
model calculations involving Coulomb excitations and neglecting retardation effects. 
However, as two-phonon polaritons are the true elementary excitations in the con- 
sidered frequency and wavevector region, a more rigorous approach is to derive a linear 
response function for the system of photons interacting with two-phonon states. 

The relevant Hamiltonian has the following form: 

H = [fink bk+ bk + hWkUk+ U k  + A Tk+ Tk - r k  (Tk+ ak - Tk)]  
k 

where bk and ak are the phonon and photon Bose operators, hnk and h W k  are the 
corresponding energies, A is the anharmonicity constant and r k  is the photon-two- 
phonon coupling constant. h a ,  is an average two-phonon energy, f = - E, is the 
dielectric oscillator strength of the two-phonon transitions, and ek and j k  are the polar- 
ization unit vectors of the photons and the two-phonon transitions. The photon-single- 
phonon interaction gives a negligible contribution to two-phonon spectra and, for this 
reason, terms proportional to ab+ or a+b are not included in (1). 

The electric field operator E(r)  in the two-phonon region contains a photon part 
( -a) and a polarization part (-7'): 

E(r)  = 2 eXp(ik * r)[S(k)(Uk -a!k)  + C(k)(Tk + TTk)] 
k (3) 

S ( k )  = i V 2 n h ~ k / ~ ,  ek C(k)  = - V2nhQ2 f / E o & ,  j k .  

The electric field spectral density is related to the Fourier componentsof the retarded 
Green function D ,  defined as 

As the photon and the two-phonon energies considered here are much higher than 
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the thermal energy at room temperature, all statistical averages can be replaced by an 
average over the ground state of the system corresponding to zero temperature. In this 
case the equations of motion for the Green functions in ( 5 )  form a closed linear set whose 
solution is 

where 

are the two-phonon and the photon Green functions in the absence of photon-two- 
phonon interaction and 

is the Green function of two non-interacting phonons. 

determined from the poles of the Green function Gg: 
The spectrum of the mixed photon-two-phonon states (two-phonon polaritons) is 

G, = (GT'G;' - ITkl2)-'. (9) 

The energies of the 'pure' (with retardation neglected) two-phonon states correspond 
to the poles of the Green function GT(w, k) .  Owing to phonon dispersion, the energies 
of the two-phonon states with a fixed ( k  = 0) value of the summary wavevector and 
different individual wavevectors form a quasi-continuous band ( V )  of approximately 
twice the single-phonon band width. In the case of strong anharmonicity (usually 
IA/Vl > 0.2.5 [16, 17]), a narrow peak of two-phonon bound states (a biphonon) splits 
from the two-phonon band. 

It is interesting to note the changesin the photon and the two-phonon Green functions 
in the case of the photon-two-phonon interaction. Thus the modified photon Green 
function (6a)  has zeros which coincide with the poles of the 'pure' two-phonon Green 
function GT while the modified two-phonon Green function (6c)  has zeros for the 
frequencies and wavevectors of the 'pure' photons. Such changes in the spectrum are 
typical for the interaction of electromagnetic waves with a continuum of states known 
as the Fano antiresonance [ 181, 

With the help of ( 5 )  and (6) the following expression for the Fourier components of 
the linear response function is readily obtained: 

where R ( - o ,  - k )  is the inverse frequency and wavevector part. The two-phonon 
polariton spectrum is related to the poles of the Green function GE(o,  k ) ,  while the 
functions G T ~  and G;' are regular and monotonic in the considered region. As seen 
from (9), the poles of G, differ considerably from those of GT and G,. The main 
contribution to the linear response function is associated with the photon part of the 
electricfield( /SI2 %- iCI2). Itcanbeshownthatthispartcoincideswiththeelectrodynamic 
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Figure 1. Electric field spectral density of bulk two-phonon polaritons in the region of an 
intensive two-phonon band of non-interacting phonons. 

Green function derived from Maxwell’s equations if the following expression for the 
dielectric function in the two-phonon region is used: 

&(U, k )  = E ,  -fS1,G,(o, k ) .  (11) 
Thus the microscopic approach gives corrections to the two-phonon polariton spectrum 
associated with the dipole moments of the two-phonon transitions. 

3. Electric field spectral density of two-phonon polaritons 

The electric field spectral density is related to the imaginary part of the diagonal com- 
ponents of the linear response function by means of 

For the computation of the electric field spectral density of two-phonon polaritons, 
the following integral representation of the Green function of two non-interacting 
phonons has been employed: 

where go is the density of states of two non-interacting phonons and Z(w) is the real 
part of the integral. A model density of states of elliptical type appropriate to three- 
dimensional crystals has been used: 

(V/2)2 - w 2  w2 < (V/2)2 
0 2  > (V/2)2 

(14) go(0) = [ “b 
where Vis the two-phonon band width. 

The electric field spectral density of two-phonon polaritons has been computed for 
different values of the oscillator strength and the anharmonicity. The polariton spectrum 
in the region of an intensive band of two non-interacting phonons is shown in figure 1. 
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Figure 2. Electric field spectral density of two-phonon polaritons in the case of strong 
anharmonicity (A /V  = -1). 

For the high-frequency dielectric function the value E, = 5.75 has been used cor- 
responding to ZnSe crystals and for the oscillator strength of the two-phonon transition 
the valuef= 0.15, which is ten times smaller than that of the 207 cm-' fundamental 
optical vibration (according to the data cited in [12]) .  An external damping q = 0 . 0 1 ~ 2  
has been introduced, leading to finite polariton maxima outside the two-phonon band. 
The electric field spectral density features bendings of the polariton branches near the 
band boundaries and a rapid decrease in the intensity with the deviation from the light 
line corresponding to a decrease in the electromagnetic part of the polariton energy. 
The intensity inside the two-phonon band isvery weak, which is the result of the relatively 
large dipole moments of the two-phonon transitions. 

The presence of anharmonicity may influence strongly the density of two-phonon 
states and hence the spectrum of two-phonon polaritons. Weak anharmonicity 
(IA/VI < 0.25) leads to a redistribution of the density of two-phonon states inside the 
band and almost does not change the polariton spectrum outside. Strong anharmonicity 
(/A/VI > 0.25) leading to the formation of a two-phonon bound state (biphonon) outside 
the band causes considerable changes in the polariton spectrum. A typical two-phonon 
polariton spectrum in the case of strong anharmonicity (A/V = - 1) is shown in figure 2 
(the other parameters are the same as those used for figure 1). The characteristic 
polariton features (branch bendings and a gap) appear near the biphonon, while the 
polariton branch crossing the weak two-phonon band exhibits only an asymmetric 
broadening. 

The small-angle Raman scattering spectrum in the region of a two-phonon band of 
moderate intensity (2v4 in NH,Cl) measured in [5]  is shown in figure 3(b) .  The quasi- 
biphonon at the lower end of the band does not have the necessary symmetry F, and 
does not contribute to the Raman spectrum. The corresponding spectral density (figure 
3(a))  computed for an oscillator strength f = 0.03 reproduces the main features of the 
observed spectrum, namely the penetration of the polariton branches into the band, the 
antiresonance (minimum) in the middle of the band and the doublet structure near the 
upper boundary for k = 34000 cm-'. 

When the polariton spectrum inside the band has a considerable intensity (in the 
case of small dipole moments of the two-phonon transitions), it will be influenced by the 
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band structure (critical points and quasi-biphonons). In some cases this may lead to a 
non-monotonic behaviour of the polariton branch inside the band Ell]. 

4. Conclusion 

The analysis of the electric field spectral density shows that the two-phonon polariton 
spectrum depends on the density of two-phonon states and the dipole moments of the 
two-phonon transitions. Away from two-phonon resonances, the polariton spectrum 
coincides with that of the ‘pure’ photons in the medium. The polariton spectrum near 
the biphonon is similar to that associated with fundamental vibrations, while owing to 
the smaller dipole moments of the two-phonon transitions the gap in the polariton 
spectrum above the biphonon is smaller. The polariton spectrum in the region of 
intensive two-phonon bands is characterized by strong deviations from the light line 
(branch bending) outside the band and considerable damping inside. The polariton 
maxima in the region of weak two-phonon bands follow the light line and are 
accompanied only by an asymmetric broadening. Our results are in good agreement 
with the theoretical results in [9] and the experimental results in [5] .  
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